Author : 黃濬程 Chun-Cheng Huang

Advisor : 謝孫源 Sun-Yuan Hsieh Tuning Hyperparameters with Bayesian Optimization

Department of Computer Science and Information Engineering, National Cheng Kung University, Taiwan

Contents

Actual Situations

What Bayesian Optimization is capable of

Application on Mnist Dataset

Implementation of Bayesian Optimization on classic dataset

Motivation & Goal

The driving force behind the independent project

Structure of Bayesian Optimization

Simple intuition on how Bayesian Optimization works and mathematic theories behind it .

KNN on classifying dogs & cats

Interesting phenomenon and limitations on Bayesian Optimization

Problem of local maximum

Balance between exploitation and exploration

Define Model Architecture

- 1. number of dense layers
- 2. Number of neurons in each layer
- 3. Activation function of each layer

Fit the model with training dataset

4

3

If satisfied => deploy the model

Evaluating the performance of the trained model

5

. The target to be optimized (accuracy , validation loss)

Compile the model

- 1. Determine the optimizer to be used
- 2. Determine the learning rate of the optimizer

2

3. Batch Size

- The training process requires a lot of computing resource.
- It's costly to try different sets of hyperparameters .
 > takes iterations of training process shown in the previous figure .
- Bayesian Optimization
 - >> minimize the iterations of training process needed

- > Hyperparameters (non trainable):
 - Learning Rate
 - Activation function of each layer
 - Dropout rate of target layer
 - Number of neurons in Dense layer
- > Algorithms :
 - Grid Search
 - Random Search
 - Bayesian Optimization

Motivation & Goal

Develop complex deep neural networks.

Motivation

A Probabilistic way of tuning hyperparameters .

Accelerate the life cycle of producing a model.

Get a deeper insight into Bayesian Optimization (understanding the mathematics behind)

Goal

Implementing it through python

Notice its pros and cons and give proper solutions

Structure of B.O.

Structure of Bayesian Optimization Big Picture

• Bayesian Optimization

Gaussian Process:

Probabilistic model capable of predicting target function with prior belief.

Acquisition Function:

Strategy to find the next set of hyperparameters worth trying .

Structure of Bayesian Optimization

Gaussian Process

Core Concept

$$\begin{bmatrix} f(x') \\ f(x_1) \\ f(x_2) \\ \vdots \\ f(x_{n-1}) \end{bmatrix} \sim \mathcal{N}\left(\begin{bmatrix} \mathbf{0} \\ \mathbf{0} \\ \vdots \\ \mathbf{0} \end{bmatrix}, \begin{bmatrix} k(x', x') & k(x', X)^T \\ k(x', X) & K_{xx} \end{bmatrix} \right) \qquad k(x', X) = \begin{bmatrix} k(x', x_1) \\ \vdots \\ k(x', x_n) \end{bmatrix}$$

- Determine the kernel function used
- Estimating Posterior with Prior Knowledge
 - $f(x')|f(X) \sim N(k(x',)^T K_{xx}^{-1} f(X), k(x', x') + k(x', X)^T K_{xx}^{-1} k(x', X))$
 - $\mathbb{E}(f(x')|f(X)) = \Sigma_{i=1}^n K_{xx}^{-1} f(x_i) k(x', x_i)$

Structure of Bayesian Optimization Gaussian Process

> Multivariate Normal Distribution $\mathcal{N}(x \mid \mu, \Sigma) = \frac{1}{(2\pi)^{\frac{D}{2}} |\Sigma|^{\frac{1}{2}}} exp[-\frac{1}{2}(x-\mu)^T \Sigma^{-1}(x-\mu)]$

$p(f(x_0, f(x_0))) = p(f(x_0), f(x_0)) = p(f(x_0), f(x_0))$ $p(f(x_0), f(x_0)) = p(f(x_0), f(x_0))$

f(x) :

performance of the model trained using the specific set of hyperparameters

Kernel Function

ex: RBF kernel

 $k(x_i, x_j) = exp\left(\frac{-(x_i - x_j)^2}{2r^2}\right)$ r: length scale of the kernel

Structure of Bayesian Optimization

Acquisition Function

- > Goal : determine the next set of hyperparameters used on training model
- > **Probability of improvement (POI):** $POI(x) = P(f(x) \ge f(x^+)) = \phi(\frac{\mu(x) - f(x^+)}{\sigma(x)})$
- > Expected improvement (EI) :

 $EI(x) = \begin{cases} (\mu(x) - f(x^{+}))\phi(Z) + \sigma(x)\phi(Z) & \text{if } \sigma(x) > 0\\ 0 & \text{if } \sigma(x) = 0 \end{cases}$

> Upper confidence bound (UCB): $UCB(x) = \mu(x) + \kappa\sigma(x)$

Structure of Bayesian Optimization Full View

Application on Mnist

Application on Mnist model

• After implementation of Bayesian Optimization through python , I applied it to a Mnist model as my first try .

• Mission for Bayesian Optimization :

Tuning dropout rate and learning rate of the model to optimize the accuracy of the test dataset .

1 import numpy as np
2 probability_model[[x_test[:5]]]
3 plot_image(x_test[0].reshape(28,28))
4 result=probability_model.predict(x_test[0:1])
5 print(np.argmax(result))

def get_model(input_shape,dropout_rate=None):
 model=tf.keras.models.Sequential()
 model.add(1.Flatten(input_shape=input_shape))
 model.add(1.Dropout(dropout_rate))
 model.add(1.Dense(128,activation='relu'))
 model.add(1.Dense(10,activation='softmax'))
 return model

Aa Iteration	# Accuracy of test dataset	# dropout rate	# learning rate
12	0.9762	0.1764	0.002729
13	0.9766	0.1775	0.00219

KNN on classifying dogs and cats

part 5

KNN on classifying dogs & cats

• Mission for Bayesian Optimization :

Determine the number of dense layers used and the dropout rate of each dense layers while learning rate would be chosen as well .

Goal : minimize the validation loss .

def get_model(NUM_DENSE=1,dropout_rate=0):
 model=tf.keras.models.Sequential()
 model.add(l.Conv2D(32,(3,3),activation='relu',input_shape=(150,150,3)))
 model.add(l.MaxPooling2D(2,2))

model.add(1.Conv2D(64,(3,3),activation='relu'))
model.add(1.MaxPooling2D(2,2))

model.add(l.Conv2D(128,(3,3),activation='relu'))
model.add(l.MaxPooling2D(2,2))

model.add(1.Flatten())
for i in range(NUM_DENSE):
 model.add(1.Dropout(dropout_rate))
 model.add(1.Dense(512,activation='relu'))
model.add(1.Dense(2))

return model

KNN on classifying dogs & cats

Aa Iteration	# Number of Dense Layers	# Dropout Rate of Dense Layer	# Learning Rate	# Test Set Accuracy	# Test Loss
Iteration 1	3	0.7042271454095106	0.009998867689308286	0.5	0.6931524276733398
Iteration 2	2	0.3027291235719791	0.009085847911788902	0.5	0.6931489109992981
Iteration 3	1	0.44189250893013343	0.006072002005116367	0.5950000286102295	0.6703671813011169
Iteration 4	0	0.8774479954751082	0.0001	0.7329999804496765	0.5435753464698792
Iteration 5	7	0.20441075994440278	0.0001	0.718999981880188	1.0654526948928833
Iteration 6	0	0.20512040660294945	0.0001	0.7179999947547913	0.561133861541748
Iteration 7	0	0.878349648606946	0.0001	0.7009999752044678	0.56093430519104
Iteration 8	0	0.814340423014835	0.0001	0.7070000171661377	0.5644177198410034
Iteration 9	5	0.88642096332855	0.0001	0.7160000205039978	1.0443283319473267
Iteration 10	0	0.5876140250785195	0.0001	0.6930000185966492	0.5836883187294006
Iteration 11	3	0.6649025612669275	0.0001	0.7039999961853027	0.7287527918815613
Iteration 12	6	0.895918584305263	0.0001	0.7149999737739563	0.9349175691604614
Iteration 13	2	0.8922765480338355	0.0001	0.7170000076293945	0.6769360303878784

KNN on classifying dogs & cats

Bayesian version

Model trained by others

part 6

The target function which Bayesian Optimization aims to find the maximum value of is often a non– convex function.

 For acquisition functions with high exploitation , Bayesian Optimization often ends up getting stuck in local maximum .

1.0

0.1672

1.5

2.0 2.5

0.5

ū.

-1

-2

-3

-4

-1.5 -1.0 -0.5

0.0

target

0.7763

2

1

- > To strike a balance between exploitation and exploration:
 - à Combine the strategy of grid search.
 - à Probe data points according to uniform distribution models.

Summary

THANK YOU!