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Introduction 
In the process of training a model , there are several parameters required to be determined 
beforehand . Those parameters include "the Number of dense layers" , "learning rate" , "the 
type of activation functions" , "dropout rate of the particular layer" , and "loss function" , to 
name just a few and are referred to as "Hyperparameters" . A well-chosen set of 
hyperparameters can extract the essence from the training set and contribute to a decent 
deep learning model . Nevertheless , it is often hard for one to come up with a satisfying set 
of hyperparameters in the early stage of constructing a deep learning model since human 
beings are not capable of handling high dimensional problems . Thus , instead of picking up 
a random set of hyperparameters , taking advantage of probabilistic models to choose a set 
of hyperparameters would be a wise decision when there is no additional information at 
hand . Fortunately , Bayesian Optimization is an algorithm which provides us with a 
probabilistic strategy to search for a proper set of hyperparameters ; therefore , Bayesian 
Optimization would be explored in more detail below this article .

Motivation & Purpose
As we are experiencing explosive growth of machine/deep learning and its application , 
accelerating the life cycle of building an well-trained model has become a topic deserves 
further study. There are many methods such as GPU-accelerated libraries or Adam optimizer 
to shorten the life cycle of building an well-trained model nowadays . However , there's still  
room for improvement when facing complicated neural networks . I believe that tuning 
hyperparameters automatically could serve as a way to reach the goal .

In this article , we aim to give a basic intuition on how Bayesian Optimization works and 
how it differs from other algorithms on tuning hyperparameters automatically . What's 
more , we would implement Bayesian Optimization on some simple examples to make 
further extrapolations .

To sum up , this article would mainly discusses on whether Bayesian Optimization plays an 
significant role in the future deep learning industry and its pros and cons when utilizing it . 
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Moreover , the main idea behind Bayesian Optimization , acquisition functions and 
Gaussian Process , would be abstractly covered in this article . In the end of this article , we 
hope that the readers could be much more familiar with the term "Bayesian Optimization" 
and realize the merits and demerits of this algorithm .    

Literature Review
Before implementing Bayesian Optimization , the core concept of the algorithm should be 
illuminated while several terminologies also have to be introduced in case of the ambiguity 
afterwards . To briefly cover the concept of the algorithm , I'll  quote from some well-written 
articles working on the basis of Bayesian Optimization and the reference would be appended 
at the end of this article . The main goal of this section would be giving intuitions on how 
B.O. works .

Gaussian Distribution [2] [3]
A random variable  is said to be normally distributed if  it follows the probability density 
function below.

mean :    
variance : 

From the article [2] ,  the author generated 1000 examples which follow the uni-variate 
normal distribution and plotted those examples as little red vertical bars on  axis as the 
graph shows . The author also demonstrated the PDF on the vertical axis and fitted it with a 
bell curve . However , we would focus only on those little red vertical bars here and we 
should avoid connecting those values of  axis with specific meanings . All we have to 
know is that the 1000 little red vertical bars follow normal distribution .

Moreover , normal distribution can be used to make predictions for regression tasks . To 
illustrate the point of view , the author of the article express the 1000 examples above as 
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vector  and generated another independent set of examples  ( which also follows 
gaussian distribution ) . Next ,  and  were plotted along the vertical axis respectively on 

 and  as the graph shown on the left .Then , the author chose 10 random 
points respectively from ,  and connected them 1 to 1 randomly . This is just a 
reminder that   ,  was simply partial connected ; however , the two vectors are still 
independent .

There are ten lines in the graph on the right above, and each line can be viewed as a way of 
making prediction of a unspecified function between interval   . And since each line is 
connected by two points which follow two independent normal distribution respectively , we 
can assign each line with a joint probability  . What's more , rather 
than only using two vectors , if we plot more vectors between  , we can make 
predictions based on probabilistic methods not only on  and  but also on the points with 
vectors on the vertical axis . Below is the example of the above idea with 20 vectors along 
vertical axis scattered on horizontal axis .

So far , we've shown what normal distribution is capable of ; Nevertheless , the prediction of 
unspecified function based on the method above would end up being chaotic since there's 
no connection between point and point . That is , even if we know some data points of the 
function beforehand , our belief on other points wouldn't be updated . For the purpose of 
solving this problem , Multivariate Normal Distribution would be introduced down below .

Last but not least , it's also important to keep in mind that the twenty vectors in the graph 
above can be viewed as twenty independent Random Variables 
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 . So what multivariate normal distribution do would be building up the 
connections between those random variables .

Multivariate Normal Distribution [2] 
To begin with , we will take a look at how probability density function of an Multivariate 
Normal Distribution is defined :

 : multidimensional variable

 : number of Dimension of the input

 : expected value of  multidimensional variable

 : covariance matrix which stores the relationships between variable in different 
dimension

With a view to making the concept of multivariate normal distribution much more concrete 
, we would take bi-variate normal distribution as our example . This should help us on 
getting familiar with the complex symbols of the equation and getting a grasp of the 
properties of multivariate normal distribution .

First , we assume that there are two random variables (   ) follow multivariate normal 
distribution . And the visualization of how   are distributed can be shown in 3-D plot 
with the z-axis being the probability of  the distribution at that point .

Practically , if we know the value of  in advance  , we can take a slice from the 3D curve 
alone the value of  . After that , we can make a wild guess on the possible value of  
based on that slice . In other words , we take advantage of  the Bayesian Theorem based on 
our prior knowledge  .  In addition , multivariate normal distribution has a nice property 
that the conditional probability of the specific random variable would also follow normal 
distribution .   
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What's more , recalling the example we used in uni-variate gaussian process ,  
and  are two independent random variable as the graph shows . However , what if 
we assume that they are bi-variate normal distributed ? It would be exciting to find out that 
if we know the value of  in advance , we can make a guess on the value of 

 based on the slice we get from the 3D bell curve constructed by  and 
 . To sum up , building relationships between different random variables would be the 

most important intuition of gaussian process and it would be utilized very often afterwards .

 The key to build up relationships between random variables would be   - Covariance 
Matrix . 

 is the kernel function determines the covariance between  and 

The graph below is the example we used above . Besides from viewing it as connecting 20 
independent normal distributions with 10 lines , we can recognize it as 10 examples 
generated by twenty-variate normal distributions with covariance matrix ( kernel ) being 
identity matrix , i.e. 20 random variables (  ) are independent from 
others . 
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f(Y = 0)
f(Y = 1)

f(Y = 0) f(Y =
1) f(Y = 0) f(Y =
1)

Σ

Σ =

⎣
⎢
⎢⎢
⎡ k(x ,x )1 1

 k(x ,x )2 1

 …
 k(x ,x )n 1

k(x ,x )1 2

k(x ,x )2 2

…
k(x ,x )n 2

k(x ,x )1 3

k(x ,x )2 3

…
k(x ,x )n 3

…
…
…
…

k(x ,x ) 1 n

k(x ,x ) 2 n

k(x ,x ) n n
⎦
⎥
⎥⎥
⎤

k(x ,x )i j xi xj

f(Y ),f(Y )…f(Y )1 2 20

twenty vectors partially connected with 10 lines randomly  reference [2]



Tuning Hyperparameters with Bayesian Optimization ( B.O.) 6

However , if we use "RBF kernel" as our covariance matrix rather than identity matrix and 
generate ten examples , we could get a graph with ten smoother lines shown below . 
These ten lines were assigned a probability based on multivariate normal distribution 
respectively . Thus , we can imagine that with multivariate normal distribution , we 
assigned a specific probability to every possible function on domain  . Moreover , 
we can use more than twenty dimension of multivariate normal distribution to approximate 
our target function  and it might yield a better result for us .   

"RBF kernel" is one of the most frequently used kernel nowadays , RBF function is used as 

covariance function and is defined as :  where  is the length 

scale of the covariance matrix .

So far , we've got acquainted with the capacity of multivariate normal distribution . It 
provides us with a probabilistic way of making predictions on a specific function . However ,  
it should be noted that the covariance matrix (  ) and the expectation value of 
multidimensional variable (  ) needed to be set beforehand . That is to say , we would 
determine how random variables are related to others . Here , we would show what would 
happen to our predictions on functions with different kernels applied .   

RBF  kernel

Squared-exponential kernel 

Y = [0, 1]

( f(Y ),f(Y )…f(Y ) )1 2 n

reference [2]

k(x ,x ) =i j exp( )2γ2
−(x −x )i j

2

γ

Σ
μ

k(x ,x ) =i j exp( )2γ2
−(x −x )i j

2

reference [10]

k(x ,x ) =i j exp(− )2
1

0.252
(x −x )i j

2



Tuning Hyperparameters with Bayesian Optimization ( B.O.) 7

Matern 3 kernel

White Noise kernel

if   →   else  

( i.e. the kernel function would construct an identity matrix  )

How multivariate normal distribution works with predictions have been stated above , and it 
is the most important mathematics basis behind Bayesian Optimization . Next , Gaussian 
Process would be the protagonist in further discussion . Gaussian Process is a kind of 

reference [10]

k(x ,x ) ∼i j ( 1  +  ∣x −i x ∣ ) exp(−∣ x −j i x  ∣)j

reference[10]

x =i = xj k(x ,x ) =i j 1 k(x ,x ) =i j 0

reference[10]
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practical application of multivariate normal distribution and it also serves as surrogate 
model in Bayesian Optimization .

Gaussian Process [3] 
Briefly saying , with our prior belief on  ,   and some observation points of an unknown 
function , gaussian process aims to apply the technique mentioned above while fitting those 
observation points . In other words , gaussian process gives a probability to every function 
passing through those observation points . Moreover , the mean function yielded by 
gaussian process would be our best bet to approximate the target function ( how the mean 
function was derived would be introduced below ) . Furthermore , gaussian process has the 
nice property of being closed under marginalization and conditioning ; thus , when we get a 
new observation point , gaussian process can update its approximation of the function 
efficiently .

Assume that we have owned a few observation points  . 
Now , we are interested in an unknown point  and here we're going to apply gaussian 
process to predict the value of  . As we mentioned in the previous section , the kernel 
function and  have to be determined in advance ; here , we would simply denote our kernel 
function as  . Following , since gaussian process is closed under conditioning , the 
joint distribution of   also follows multivariate normal 
distribution . (  We will assume that  .)

Next , with conditioning rule , we can obtain the posterior of  is gaussian .

Furthermore , with the above equation , we can estimate the posterior mean of 

By the steps above , we can get the approximation on  , which is the value of the 
conditional expectation . Moreover , we could recursively implement those steps to map out 
our target function with high dimensional gaussian distribution .  Last but not least , when 
we get a new data point of the target function , we could update our belief with the steps 
shown above . Below would be the visualization of Gaussian Process .
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As figure 1 shows , Gaussian Process would try to to fit the observation point and make 
predictions on each point in the domain continuously . The solid line is the mean function 
derived from the above mathematic  equation while the shaded part are other points 
following multivariate normal distribution .

After we get a new observation point as shown in figure 2 , we can discover that Gaussian 
Process updates its confidence on the target function . The mean function is updated 
meanwhile , and it could be used as our prediction of target function .

figure 1 -reference[3]

figure 2-reference[3]
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As we possess more and more observation points , the uncertainty of Gaussian Process 
narrows and the prediction on rest of the points should be more accurate  .

Bayesian Optimization
So far , we are able to utilize Gaussian Process to approximate a specific function . In 
Bayesian Optimization , what Gaussian Process would try to predict is the function of 
hyperparameters which outputs the  variables representing the quality of our trained model 
( such as accuracy of test dataset ) . Here , Bayesian Optimization takes over the predicted 
function generated by Gaussian Process and determine the next observation point according 
to the result of acquisition function. Bayesian Optimization is suitable for complex deep 
neural networks , since it allows programmers using less iterations to find a decent set of 
hyperparameters while it's usually costly to train a deep neural network repeatedly . Before 
showing the visualization of Bayesian Optimization , I'm going to give a brief explanation 
on what acquisition function is .

There are three commonly used acquisition functions in Bayesian Optimization .

Probability of Improvement (PI)

Expected Improvement (EI)

Lower Confidence Bound (LCB)

Basically , those algorithms are aimed at finding the next probing point with the prediction 
of Gaussian Process . And these algorithms have its trade-off between exploitative and 
explorative respectively . The mathematic equation is relatively simple so I'm not going list 
them out . Next , with all the theorems above , we're able to get a grasp of the big picture of  
Bayesian Optimization easily .

figure 3 -reference[3]
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First things first , the x axis of the figure on the left side can be viewed as " a set of 
hyperparameters " while the the y axis stands for " an estimation of how satisfying the set of 
hyperparameters is ( which is often accuracy of  the trained model ) " . Second , we have to 
keep in mind that the dashed line is the true condition of the function which we do not 
know before using different sets of hyperparameters to train the model .

Thus ,as the figure on the left shows , we've trained two different models with two sets of 
hyperparameters. Nevertheless , if we take a peek at the true answer ( dashed line ) , both 
sets of hyperparameters are not suitable to be the optimal hyperparameters since the 
optimal hyperparameters should be around -0.5 according to the dashed line .

However , what's the next point we should try ?  That is to say , what is the next set of 
hyperparameters should we use to train our model ?

Based on the solid line constructed by gaussian process , Bayesian Optimization would 
check uniformly on x axis and estimate which point owns the largest potential improvement 
with acquisition function . In this example, Bayesian Optimization would choose the 
rightmost point as the new set of hyperparameters. And it would be the set of 
hyperparameters of the model we're going to train in the next iteration.

Until now, it seems quite vague for one to realize what Bayesian Optimization is trying to do 
, but I believe that with more examples below , the concept of Bayesian Optimization would 
be clear.

As we said in the iteration 1 , the rightmost point is the set of hyperparameters of the new 
model. Nonetheless , the figure on the left shows the new model we've trained performs 
even worse than the other two models . Consequently , Bayesian Optimization finds the new 
set of hyperparameters for the next try. ( which is about 0.25 on the right figure )

graph 1

graph 2
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Through iterations of training new models with different set of hyperparameters, we can 
observe that Bayesian Optimization find a decent approximate of the optimal 
hyperparameters.

With the optimal hyperparameters we get from the Bayesian Optimization, I believe that the 
model could be quite satisfying. Above all, the optimal hyperparameters is automatically 
found rather than manually found, which could save our time and effort with this 
probabilistic method.

To sum up, with Bayesian Optimization , it's more probable for us to find a decent set of 
hyperparameters with minimum iterations of training different models.

Research Methods
Implement Bayesian Optimization through python code on colab  .

Compare the result and verify whether Bayesian Optimization functions well .

Finding pros and cons of Bayesian Optimization .

Visualization of the result.

Results & Discussion
In this section , we would implement Bayesian Optimization on a few classic machine 
learning models and make further discussions on those specific examples .

Mnist Model

Part of the code

def get_model(input_shape,dropout_rate=None): 
  model=tf.keras.models.Sequential() 
  model.add(l.Flatten(input_shape=input_shape)) 
  model.add(l.Dense(128,activation='relu')) 
  model.add(l.Dropout(dropout_rate)) 
  model.add(l.Dense(10,activation='softmax')) 
  return model 
 
def fit_with(input_shape,verbose,dropout_rate,lr): 
  model=get_model(input_shape,dropout_rate) //get the model above  
  optimizer=rmsprop.RMSprop(learning_rate=lr) 

graph 3 graph 4
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  model.compile(loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True), 
                optimizer=optimizer, 
                metrics=['accuracy']) 
  model.fit(x=x_train,y=y_train,epochs=5,verbose=0) 
  score=model.evaluate(x=x_test,y=y_test,verbose=0) 
 
  return score[1] 
 
//the domain BayesianOptimization explore 
pbounds={'dropout_rate':(0.1,0.5),'lr':(1e-4,1e-2)} 
 
optimizer=BayesianOptimization( 
    f=fit_with_partial, 
    pbounds=pbounds, 
    verbose=2, 
    random_state=1, 
) 
 
optimizer.maximize(init_points=5,n_iter=10,acq='poi',)

As the code shown above , for this model , our hyperparameters are dropout_rate and 
learning_rate . What Bayesian Optimization would do here is to find the best set of 
dropout_rate and learning_rate to maximize the accuracy on test dataset from keras mnist.   
And the result is down below .

( In this example , the kernel of the gaussian process is Matern 3/2 and the acquisition 
function adopted is POI . )

As the template demonstrated on the left , we can see that in training phase , Bayesian 
Optimization would choose different set of  hyperparameters and get our observation point 
in every iteration . According to the template , it is indeed that Bayesian Optimization keeps 
making progress on finding better set of hyperparameters and it converges roughly to the 
set {"dropout_rate "= 0.1775 , "learning_rate"=0.00219 } , which leads to  97.66% accuracy of 
prediction on test dataset . 

From this example , we discovered that Bayesian Optimization do have the capability to find 
satisfying results and even make further progress with a few iterations . After realizing the 
subtle and fascinating power that Bayesian Optimization holds , we would move on to the 
next example .

Each iteration of  Bayesian Optimization ( 
target stands for the value of 

model.evaluate(x=x_test,y=y_test,verbose=0) 
)

prediction of the best model we have got
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Problem of Global Maximum
Although Bayesian Optimization has done well on the previous example , we think there's 
more to ponder on . In most of the techniques finding optimum of specific function , it is 
inevitable that we might stuck in local optimum when our target function is non-convex 
function and Bayesian Optimization is no exception . In this example , we will exert 
Bayesian Optimization on an non-convex function .

( In this example , the kernel of the gaussian process is Matern 3/2 and the acquisition 
function adopted is EI . )

def objective(x,noise=0.1): 
  noise= normal(loc=0,scale=noise) 
  return 0.75*x**7-3.19*x**6+0.66*x**5+10.64*x**4-8.09*x**3-7.90*x**2+6.33*x+0+noise

Above is the non-convex target function and we would utilize Bayesian Optimization to find 
its global maximum . We add some noises to simulate the real world problem since it's not 
always possible for us to get accurate observation points of the specific function .

The visualization of the objective function and the optima point are listed in the graph up 
there . We should notice that programmers doesn't know those information beforehand . 
Now , let's see what if we utilize Bayesian Optimization on the objective function . In each 
iteration , we would probe an observation point through Bayesian Optimization and we 
would recursively implement this behavior 15 iterations .

Visualization of the target function and the optima of the function 
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From the result shown above , we could find out that Bayesian Optimization indeed has the 
problem of stucking in the local maximum . And here is my solution based on many times of 
trials and errors .

To begin with , we know that as we own more and more prior knowledge of the target 
function , Gaussian Process would update its prediction on the target function . However , 
when Bayesian Optimization converges , the new observation point we probed is often 
adjacency to the previous observation points . Thus , the update belief of Gaussian Process 
would only has a slightly difference from the previous belief .  To rephrase it , under such 
cases , Gaussian Process is not able to catch the big picture of our target function and make 
precise predictions ; therefore , it often ends up that acquisition function suggests the 
wrong point to probe in the next iteration . In consequence , our mission is to help Gaussian 
Process gain the big picture of our function . 

To reach the goal discussed above , before reinforcing Bayesian Optimization , we would 
uniformly probed a several points of our target function in advance . The more continual our 
uniformly probed observation points are , the better our gaussian process would fit the 
function . Now , we would show what would happen if we own 10 uniformly distributed 
observation points of the objective function before implementing Bayesian Optimization .

 

As the graphs illustrated above , we can find out that though both implementations of 
Bayesian Optimization take 15 iterations to find the maximum value of the objective 
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function , the latter implementation with 10 uniformly distributed observation points has 
resolved the problem of getting stuck in local maximum . Moreover, it only takes 5 
iterations of Bayesian Optimization to get a decent approximation of the global maximum . 
Still , it keeps getting closer and closer to the global maximum in every iteration . 

Our approximation of global maximum derived from Bayesian Optimization is 4.023 , while 
the true optima is 4.039 . I believe that our approximation is quite satisfying since we 
basically know nothing about the function in our initial state . Not to mention that the 
observation points we get has some noises added to it .

From this example , we could extrapolate that as long as we hold the big picture of our 
objective function , Bayesian Optimization could be a powerful tool finding a decent set of 
hyperparameters . Last but not least , though the scheme above can ameliorate the 
reliability of finding global maximum by Bayesian Optimization , I believe there is still room 
for improvement of solving this problem .

In conclusion , when we're facing high dimensional problems which is often costly to probe 
a observation point , I believe through the scheme similar to grid search combined with 
Bayesian Optimization , we should yield a relatively satisfying result whether it is global 
maximum or not.

KNN on classifying picture of  dogs and cats with Bayesian 
Optimization
In this section , we will see how Bayesian Optimization works with KNN . There are some 
interesting behavior carried out by Bayesian Optimization and we would get into it below 
this paragraph .

In this implementation of Bayesian Optimization , I adopted the dataset from 
'https://storage.googleapis.com/mledu-datasets/cats_and_dogs_filtered.zip' and the dataset 
would be split into two sections - training dataset and  validation dataset .  I utilize Keras's 
Sequential Model to accomplish this task . The structure of my model is shown in the 
python code below . 

def get_model(NUM_DENSE=1,dropout_rate=0): 
  model=tf.keras.models.Sequential() 
  model.add(l.Conv2D(32,(3,3),activation='relu',input_shape=(150,150,3))) 
  model.add(l.MaxPooling2D(2,2)) 
   
  model.add(l.Conv2D(64,(3,3),activation='relu')) 
  model.add(l.MaxPooling2D(2,2)) 
 
  model.add(l.Conv2D(128,(3,3),activation='relu')) 
  model.add(l.MaxPooling2D(2,2)) 

https://storage.googleapis.com/mledu-datasets/cats_and_dogs_filtered.zip
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  model.add(l.Flatten()) 
  for i in range(NUM_DENSE): 
    model.add(l.Dropout(dropout_rate)) 
    model.add(l.Dense(512,activation='relu')) 
  model.add(l.Dense(2)) 
 
  return model

At this point , the " NUM_DENSE " and "dropout_rate" weren't determined yet . Thus , these 
two parameters would be tuned by Bayesian Optimization and the learning rate of the 
model would be automatically tuned as well .

Next , I implemented Bayesian Optimization on my model with a view to getting the least 
validation loss to prevent my model from getting overfitting . ( I've tried to use Bayesian 
Optimization to find the set of hyperparameters which optimize the value of validation 
accuracy ; however , though it did quite well on the task , the problem of overfitting the 
training set remained unsolved in that case . )

pbounds={'NUM_DENSE':(0,7),'lr':(1e-2,1e-4),'dropout_rate':(0.2,0.9)}

Above is the domain which Bayesian Optimization would dive in . I recorded every 
hyperparameter set Bayesian Optimization probed and constructed the table below . 

( In this example , the kernel of the gaussian process is Matern 3/2 and the acquisition 
function adopted is EI . )

Generally , machine learning or deep learning models often try to strike a balance between 
generalization and overfitting . In addition , it's a common way for a machine learning 
programmer to apply dense layers in their models with the aim of making their models 
capable of fitting high dimensional problems . Nevertheless , improper usage of dense layers 
often leads to overfitting . Moreover , when machine learning programmers confronting a 
brand new problem , it is technically difficult for one to realize what's the proper numbers of 
dense layer to the problem . In this example , we can bring to light that Bayesian 
Optimization may come in hand when we are facing such catastrophes .

From the table shown above , I think there are some mesmerizing behaviors of Bayesian 
Optimization we could notice .

After a few iterations , we could discover that Bayesian Optimization probed several set of 
hyperparameters with the attribute "NUM_DENSE" being zero . It's not hard for us to 
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envision that without dense layer , the condition of overfitting the training dataset could be 
improved , so it's the right thing for the Bayesian Optimization to do . 

Nonetheless , from iteration 9 to iteration 13 , there were some captivating things on foot . 
Rather getting stuck on applying zero dense layer ,  Bayesian Optimization tried numbers of 
dense layers with high dropout rate as its hyperparameter .  I think it is a kind of  strategy 
similar to those programmers might use . We want our models to own the potential of 
describing complex functions while we would exert regularizations on our models . Thus , it 
is pretty exciting to perceive that Bayesian Optimization do make wise decisions . In 
conclusion , when we don't know where to start on training a complex neural networks , 
maybe Bayesian Optimization could illuminate our way up or even accomplish our goal 
subtly .

There is still one thing worth mentioning . We could spot that the learning rate hasn't 
changed since iteration 4 . To know whether Bayesian Optimization is functioning normally 
, I changed the bound of learning rate to see whether Bayesian Optimization would probe on 
a different learning rate . Surprisingly , Bayesian Optimization take the smallest value in the 
bound of learning rate . After a few attempts , I notice that it's quite reasonable for Bayesian 
Optimization to pick the smallest number it could use as learning rate . Because from the 
long term , the smaller the value of learning rate is , the more possible our model could get 
close to global optimum due to the property of gradient descent . However , it might not 
converge well since our number of iteration is limited , so we need to be cautious when we 
are tuning learning rate through Bayesian Optimization .

In the end of this example , I want to compare the model taking advantage of Bayesian 
Optimization with the model trained with the same dataset on the open source .  

As the line chart shows , we could see that Bayesian Optimization meet our expectations on 
resolving the problem of overfitting ; yet , it is a pity that the dataset aren't good enough to 
increase our accuracy . To sum up , I think the model collaborating Bayesian Optimization 
do surpass the performance of the general model .  

Epilogue

performance of the model trained with Bayesian 
Optimization

the model trained by the open source tutorial with 
same dataset used above
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After going through those details of Bayesian Optimization , I hope that the one who read 
this article could feel the essence of it and enjoy the fascinating probabilistic properties 
behind it . We've spot how powerful Bayesian Optimization is and also recognize some of  
the flaws of Bayesian Optimization . I hope that in the future , the open source community 
can construct more practical tools with Bayesian Optimization and I would spare no effort 
to modify or make use of Bayesian Optimization . Thanks to this opportunity , I have gained 
an insight into deep learning industry and at the same time sharpen my python 
programming skills . It would be the end of the article . We appreciate your time spending 
on reading through this article .
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