
Tuning Hyperparameters with Bayesian Optimization (B.O.) 1

Tuning Hyperparameters with
Bayesian Optimization (B.O.)
作者 : ⿈濬程

指導教授 : 謝孫源 博⼠

Author : Chun-Cheng Huang

Advisor : Sun-Yuan Hsieh Ph.D.

Institution : Department of Computer Science &
Information Engineering, National Cheng Kung
University

2021/3/27

Introduction
In the process of training a model , there are several parameters required to be determined
beforehand . Those parameters include "the Number of dense layers" , "learning rate" , "the
type of activation functions" , "dropout rate of the particular layer" , and "loss function" , to
name just a few and are referred to as "Hyperparameters" . A well-chosen set of
hyperparameters can extract the essence from the training set and contribute to a decent
deep learning model . Nevertheless , it is often hard for one to come up with a satisfying set
of hyperparameters in the early stage of constructing a deep learning model since human
beings are not capable of handling high dimensional problems . Thus , instead of picking up
a random set of hyperparameters , taking advantage of probabilistic models to choose a set
of hyperparameters would be a wise decision when there is no additional information at
hand . Fortunately , Bayesian Optimization is an algorithm which provides us with a
probabilistic strategy to search for a proper set of hyperparameters ; therefore , Bayesian
Optimization would be explored in more detail below this article .

Motivation & Purpose
As we are experiencing explosive growth of machine/deep learning and its application ,
accelerating the life cycle of building an well-trained model has become a topic deserves
further study. There are many methods such as GPU-accelerated libraries or Adam optimizer
to shorten the life cycle of building an well-trained model nowadays . However , there's still
room for improvement when facing complicated neural networks . I believe that tuning
hyperparameters automatically could serve as a way to reach the goal .

In this article , we aim to give a basic intuition on how Bayesian Optimization works and
how it differs from other algorithms on tuning hyperparameters automatically . What's
more , we would implement Bayesian Optimization on some simple examples to make
further extrapolations .

To sum up , this article would mainly discusses on whether Bayesian Optimization plays an
significant role in the future deep learning industry and its pros and cons when utilizing it .

Tuning Hyperparameters with Bayesian Optimization (B.O.) 2

Moreover , the main idea behind Bayesian Optimization , acquisition functions and
Gaussian Process , would be abstractly covered in this article . In the end of this article , we
hope that the readers could be much more familiar with the term "Bayesian Optimization"
and realize the merits and demerits of this algorithm .

Literature Review
Before implementing Bayesian Optimization , the core concept of the algorithm should be
illuminated while several terminologies also have to be introduced in case of the ambiguity
afterwards . To briefly cover the concept of the algorithm , I'll quote from some well-written
articles working on the basis of Bayesian Optimization and the reference would be appended
at the end of this article . The main goal of this section would be giving intuitions on how
B.O. works .

Gaussian Distribution [2] [3]
A random variable is said to be normally distributed if it follows the probability density
function below.

mean :
variance :

From the article [2] , the author generated 1000 examples which follow the uni-variate
normal distribution and plotted those examples as little red vertical bars on axis as the
graph shows . The author also demonstrated the PDF on the vertical axis and fitted it with a
bell curve . However , we would focus only on those little red vertical bars here and we
should avoid connecting those values of axis with specific meanings . All we have to
know is that the 1000 little red vertical bars follow normal distribution .

Moreover , normal distribution can be used to make predictions for regression tasks . To
illustrate the point of view , the author of the article express the 1000 examples above as

X

μ

σ2

P (x) =X exp(−)
σ2π

1
2σ2

(x− μ)2

X

X

GRAPH FROM [2]

Tuning Hyperparameters with Bayesian Optimization (B.O.) 3

vector and generated another independent set of examples (which also follows
gaussian distribution) . Next , and were plotted along the vertical axis respectively on

 and as the graph shown on the left .Then , the author chose 10 random
points respectively from , and connected them 1 to 1 randomly . This is just a
reminder that , was simply partial connected ; however , the two vectors are still
independent .

There are ten lines in the graph on the right above, and each line can be viewed as a way of
making prediction of a unspecified function between interval . And since each line is
connected by two points which follow two independent normal distribution respectively , we
can assign each line with a joint probability . What's more , rather
than only using two vectors , if we plot more vectors between , we can make
predictions based on probabilistic methods not only on and but also on the points with
vectors on the vertical axis . Below is the example of the above idea with 20 vectors along
vertical axis scattered on horizontal axis .

So far , we've shown what normal distribution is capable of ; Nevertheless , the prediction of
unspecified function based on the method above would end up being chaotic since there's
no connection between point and point . That is , even if we know some data points of the
function beforehand , our belief on other points wouldn't be updated . For the purpose of
solving this problem , Multivariate Normal Distribution would be introduced down below .

Last but not least , it's also important to keep in mind that the twenty vectors in the graph
above can be viewed as twenty independent Random Variables

x1 x2
x1 x2

Y = 0 Y = 1
x1 x2

x1 x2

 was plotted on while was
plotted on [2]

x1 Y = 0 x2
Y = 1

 , were connected randomly [2]x1 x2

[0, 1]

P (x) ×X1 i P (x)X2 j

[0, 1]
0 1

twenty vectors partially connected with 10 lines randomly [2]

f(Y = 0),f(Y =

Tuning Hyperparameters with Bayesian Optimization (B.O.) 4

 . So what multivariate normal distribution do would be building up the
connections between those random variables .

Multivariate Normal Distribution [2]
To begin with , we will take a look at how probability density function of an Multivariate
Normal Distribution is defined :

 : multidimensional variable

 : number of Dimension of the input

 : expected value of multidimensional variable

 : covariance matrix which stores the relationships between variable in different
dimension

With a view to making the concept of multivariate normal distribution much more concrete
, we would take bi-variate normal distribution as our example . This should help us on
getting familiar with the complex symbols of the equation and getting a grasp of the
properties of multivariate normal distribution .

First , we assume that there are two random variables () follow multivariate normal
distribution . And the visualization of how are distributed can be shown in 3-D plot
with the z-axis being the probability of the distribution at that point .

Practically , if we know the value of in advance , we can take a slice from the 3D curve
alone the value of . After that , we can make a wild guess on the possible value of
based on that slice . In other words , we take advantage of the Bayesian Theorem based on
our prior knowledge . In addition , multivariate normal distribution has a nice property
that the conditional probability of the specific random variable would also follow normal
distribution .

a), ...,f(Y =i 1)

N (x∣μ,Σ) = exp[− (x−
(2π) ∣Σ∣2

D
2
1

1
2
1

μ) Σ (x−T −1 μ)]

x

D

μ

Σ

x ,x1 2

x ,x1 2

reference [2]
reference [2]

x2
x2 x1

x2

Tuning Hyperparameters with Bayesian Optimization (B.O.) 5

What's more , recalling the example we used in uni-variate gaussian process ,
and are two independent random variable as the graph shows . However , what if
we assume that they are bi-variate normal distributed ? It would be exciting to find out that
if we know the value of in advance , we can make a guess on the value of

 based on the slice we get from the 3D bell curve constructed by and
 . To sum up , building relationships between different random variables would be the

most important intuition of gaussian process and it would be utilized very often afterwards .

 The key to build up relationships between random variables would be - Covariance
Matrix .

 is the kernel function determines the covariance between and

The graph below is the example we used above . Besides from viewing it as connecting 20
independent normal distributions with 10 lines , we can recognize it as 10 examples
generated by twenty-variate normal distributions with covariance matrix (kernel) being
identity matrix , i.e. 20 random variables () are independent from
others .

 was plotted on while was plotted on reference [2]x1 Y = 0 x2 Y = 1

f(Y = 0)
f(Y = 1)

f(Y = 0) f(Y =
1) f(Y = 0) f(Y =
1)

Σ

Σ =

⎣
⎢
⎢⎢
⎡ k(x ,x)1 1

 k(x ,x)2 1

 …
 k(x ,x)n 1

k(x ,x)1 2

k(x ,x)2 2

…
k(x ,x)n 2

k(x ,x)1 3

k(x ,x)2 3

…
k(x ,x)n 3

…
…
…
…

k(x ,x) 1 n

k(x ,x) 2 n

k(x ,x) n n
⎦
⎥
⎥⎥
⎤

k(x ,x)i j xi xj

f(Y),f(Y)…f(Y)1 2 20

twenty vectors partially connected with 10 lines randomly reference [2]

Tuning Hyperparameters with Bayesian Optimization (B.O.) 6

However , if we use "RBF kernel" as our covariance matrix rather than identity matrix and
generate ten examples , we could get a graph with ten smoother lines shown below .
These ten lines were assigned a probability based on multivariate normal distribution
respectively . Thus , we can imagine that with multivariate normal distribution , we
assigned a specific probability to every possible function on domain . Moreover ,
we can use more than twenty dimension of multivariate normal distribution to approximate
our target function and it might yield a better result for us .

"RBF kernel" is one of the most frequently used kernel nowadays , RBF function is used as

covariance function and is defined as : where is the length

scale of the covariance matrix .

So far , we've got acquainted with the capacity of multivariate normal distribution . It
provides us with a probabilistic way of making predictions on a specific function . However ,
it should be noted that the covariance matrix () and the expectation value of
multidimensional variable () needed to be set beforehand . That is to say , we would
determine how random variables are related to others . Here , we would show what would
happen to our predictions on functions with different kernels applied .

RBF kernel

Squared-exponential kernel

Y = [0, 1]

(f(Y),f(Y)…f(Y))1 2 n

reference [2]

k(x ,x) =i j exp()2γ2
−(x −x)i j

2

γ

Σ
μ

k(x ,x) =i j exp()2γ2
−(x −x)i j

2

reference [10]

k(x ,x) =i j exp(−)2
1

0.252
(x −x)i j

2

Tuning Hyperparameters with Bayesian Optimization (B.O.) 7

Matern 3 kernel

White Noise kernel

if → else

(i.e. the kernel function would construct an identity matrix)

How multivariate normal distribution works with predictions have been stated above , and it
is the most important mathematics basis behind Bayesian Optimization . Next , Gaussian
Process would be the protagonist in further discussion . Gaussian Process is a kind of

reference [10]

k(x ,x) ∼i j (1 + ∣x −i x ∣) exp(−∣ x −j i x ∣)j

reference[10]

x =i = xj k(x ,x) =i j 1 k(x ,x) =i j 0

reference[10]

Tuning Hyperparameters with Bayesian Optimization (B.O.) 8

practical application of multivariate normal distribution and it also serves as surrogate
model in Bayesian Optimization .

Gaussian Process [3]
Briefly saying , with our prior belief on , and some observation points of an unknown
function , gaussian process aims to apply the technique mentioned above while fitting those
observation points . In other words , gaussian process gives a probability to every function
passing through those observation points . Moreover , the mean function yielded by
gaussian process would be our best bet to approximate the target function (how the mean
function was derived would be introduced below) . Furthermore , gaussian process has the
nice property of being closed under marginalization and conditioning ; thus , when we get a
new observation point , gaussian process can update its approximation of the function
efficiently .

Assume that we have owned a few observation points .
Now , we are interested in an unknown point and here we're going to apply gaussian
process to predict the value of . As we mentioned in the previous section , the kernel
function and have to be determined in advance ; here , we would simply denote our kernel
function as . Following , since gaussian process is closed under conditioning , the
joint distribution of also follows multivariate normal
distribution . (We will assume that .)

Next , with conditioning rule , we can obtain the posterior of is gaussian .

Furthermore , with the above equation , we can estimate the posterior mean of

By the steps above , we can get the approximation on , which is the value of the
conditional expectation . Moreover , we could recursively implement those steps to map out
our target function with high dimensional gaussian distribution . Last but not least , when
we get a new data point of the target function , we could update our belief with the steps
shown above . Below would be the visualization of Gaussian Process .

μ Σ

f(x),f(x),f(x),…,f(x)1 2 3 n

f(x)′

f(x)′

μ

k(x ,x)1 2

[f(x),f(x),f(x),…,f(x)]′
1 2 n

T

μ = 0

∼

⎣
⎢
⎢
⎢
⎢
⎢⎢
⎡f(x)

′

f(x)1
f(x)2

⋮
f(x)n ⎦

⎥
⎥
⎥
⎥
⎥⎥
⎤

N k(x ,x) =

⎝
⎜
⎜
⎜
⎜
⎜⎜
⎛

,

⎣
⎢
⎢
⎢
⎢
⎢⎢
⎡0
0
0

⋮
0⎦
⎥
⎥
⎥
⎥
⎥⎥
⎤

[
k(x ,x)′ ′

k(x ,x)′
k(x ,x)′ T

Kxx
]

⎠
⎟
⎟
⎟
⎟
⎟⎟
⎞

′

⎣
⎢
⎢
⎢⎢
⎡k(x ,x)

′
1

k(x ,x)′
2

⋮
k(x ,x)′

n
⎦
⎥
⎥
⎥⎥
⎤

f(x)′

f(x)∣f(x) ∼′ N(k(x ,x) K f(x) , k(x ,x) +′ T
xx
−1 ′ ′ k(x ,x) K k(x ,x))′ T

xx
−1 ′

f(x)′

E(f(x)∣f(x)) =′ K f(x)k(x ,x)
i=1

∑
n

xx
−1

i
′

i

f(x)′

Tuning Hyperparameters with Bayesian Optimization (B.O.) 9

As figure 1 shows , Gaussian Process would try to to fit the observation point and make
predictions on each point in the domain continuously . The solid line is the mean function
derived from the above mathematic equation while the shaded part are other points
following multivariate normal distribution .

After we get a new observation point as shown in figure 2 , we can discover that Gaussian
Process updates its confidence on the target function . The mean function is updated
meanwhile , and it could be used as our prediction of target function .

figure 1 -reference[3]

figure 2-reference[3]

Tuning Hyperparameters with Bayesian Optimization (B.O.) 10

As we possess more and more observation points , the uncertainty of Gaussian Process
narrows and the prediction on rest of the points should be more accurate .

Bayesian Optimization
So far , we are able to utilize Gaussian Process to approximate a specific function . In
Bayesian Optimization , what Gaussian Process would try to predict is the function of
hyperparameters which outputs the variables representing the quality of our trained model
(such as accuracy of test dataset) . Here , Bayesian Optimization takes over the predicted
function generated by Gaussian Process and determine the next observation point according
to the result of acquisition function. Bayesian Optimization is suitable for complex deep
neural networks , since it allows programmers using less iterations to find a decent set of
hyperparameters while it's usually costly to train a deep neural network repeatedly . Before
showing the visualization of Bayesian Optimization , I'm going to give a brief explanation
on what acquisition function is .

There are three commonly used acquisition functions in Bayesian Optimization .

Probability of Improvement (PI)

Expected Improvement (EI)

Lower Confidence Bound (LCB)

Basically , those algorithms are aimed at finding the next probing point with the prediction
of Gaussian Process . And these algorithms have its trade-off between exploitative and
explorative respectively . The mathematic equation is relatively simple so I'm not going list
them out . Next , with all the theorems above , we're able to get a grasp of the big picture of
Bayesian Optimization easily .

figure 3 -reference[3]

Tuning Hyperparameters with Bayesian Optimization (B.O.) 11

First things first , the x axis of the figure on the left side can be viewed as " a set of
hyperparameters " while the the y axis stands for " an estimation of how satisfying the set of
hyperparameters is (which is often accuracy of the trained model) " . Second , we have to
keep in mind that the dashed line is the true condition of the function which we do not
know before using different sets of hyperparameters to train the model .

Thus ,as the figure on the left shows , we've trained two different models with two sets of
hyperparameters. Nevertheless , if we take a peek at the true answer (dashed line) , both
sets of hyperparameters are not suitable to be the optimal hyperparameters since the
optimal hyperparameters should be around -0.5 according to the dashed line .

However , what's the next point we should try ? That is to say , what is the next set of
hyperparameters should we use to train our model ?

Based on the solid line constructed by gaussian process , Bayesian Optimization would
check uniformly on x axis and estimate which point owns the largest potential improvement
with acquisition function . In this example, Bayesian Optimization would choose the
rightmost point as the new set of hyperparameters. And it would be the set of
hyperparameters of the model we're going to train in the next iteration.

Until now, it seems quite vague for one to realize what Bayesian Optimization is trying to do
, but I believe that with more examples below , the concept of Bayesian Optimization would
be clear.

As we said in the iteration 1 , the rightmost point is the set of hyperparameters of the new
model. Nonetheless , the figure on the left shows the new model we've trained performs
even worse than the other two models . Consequently , Bayesian Optimization finds the new
set of hyperparameters for the next try. (which is about 0.25 on the right figure)

graph 1

graph 2

Tuning Hyperparameters with Bayesian Optimization (B.O.) 12

Through iterations of training new models with different set of hyperparameters, we can
observe that Bayesian Optimization find a decent approximate of the optimal
hyperparameters.

With the optimal hyperparameters we get from the Bayesian Optimization, I believe that the
model could be quite satisfying. Above all, the optimal hyperparameters is automatically
found rather than manually found, which could save our time and effort with this
probabilistic method.

To sum up, with Bayesian Optimization , it's more probable for us to find a decent set of
hyperparameters with minimum iterations of training different models.

Research Methods
Implement Bayesian Optimization through python code on colab .

Compare the result and verify whether Bayesian Optimization functions well .

Finding pros and cons of Bayesian Optimization .

Visualization of the result.

Results & Discussion
In this section , we would implement Bayesian Optimization on a few classic machine
learning models and make further discussions on those specific examples .

Mnist Model

Part of the code

def get_model(input_shape,dropout_rate=None):
 model=tf.keras.models.Sequential()
 model.add(l.Flatten(input_shape=input_shape))
 model.add(l.Dense(128,activation='relu'))
 model.add(l.Dropout(dropout_rate))
 model.add(l.Dense(10,activation='softmax'))
 return model

def fit_with(input_shape,verbose,dropout_rate,lr):
 model=get_model(input_shape,dropout_rate) //get the model above
 optimizer=rmsprop.RMSprop(learning_rate=lr)

graph 3 graph 4

Tuning Hyperparameters with Bayesian Optimization (B.O.) 13

 model.compile(loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True),
 optimizer=optimizer,
 metrics=['accuracy'])
 model.fit(x=x_train,y=y_train,epochs=5,verbose=0)
 score=model.evaluate(x=x_test,y=y_test,verbose=0)

 return score[1]

//the domain BayesianOptimization explore
pbounds={'dropout_rate':(0.1,0.5),'lr':(1e-4,1e-2)}

optimizer=BayesianOptimization(
 f=fit_with_partial,
 pbounds=pbounds,
 verbose=2,
 random_state=1,
)

optimizer.maximize(init_points=5,n_iter=10,acq='poi',)

As the code shown above , for this model , our hyperparameters are dropout_rate and
learning_rate . What Bayesian Optimization would do here is to find the best set of
dropout_rate and learning_rate to maximize the accuracy on test dataset from keras mnist.
And the result is down below .

(In this example , the kernel of the gaussian process is Matern 3/2 and the acquisition
function adopted is POI .)

As the template demonstrated on the left , we can see that in training phase , Bayesian
Optimization would choose different set of hyperparameters and get our observation point
in every iteration . According to the template , it is indeed that Bayesian Optimization keeps
making progress on finding better set of hyperparameters and it converges roughly to the
set {"dropout_rate "= 0.1775 , "learning_rate"=0.00219 } , which leads to 97.66% accuracy of
prediction on test dataset .

From this example , we discovered that Bayesian Optimization do have the capability to find
satisfying results and even make further progress with a few iterations . After realizing the
subtle and fascinating power that Bayesian Optimization holds , we would move on to the
next example .

Each iteration of Bayesian Optimization (
target stands for the value of

model.evaluate(x=x_test,y=y_test,verbose=0)
)

prediction of the best model we have got

Tuning Hyperparameters with Bayesian Optimization (B.O.) 14

Problem of Global Maximum
Although Bayesian Optimization has done well on the previous example , we think there's
more to ponder on . In most of the techniques finding optimum of specific function , it is
inevitable that we might stuck in local optimum when our target function is non-convex
function and Bayesian Optimization is no exception . In this example , we will exert
Bayesian Optimization on an non-convex function .

(In this example , the kernel of the gaussian process is Matern 3/2 and the acquisition
function adopted is EI .)

def objective(x,noise=0.1):
 noise= normal(loc=0,scale=noise)
 return 0.75*x**7-3.19*x**6+0.66*x**5+10.64*x**4-8.09*x**3-7.90*x**2+6.33*x+0+noise

Above is the non-convex target function and we would utilize Bayesian Optimization to find
its global maximum . We add some noises to simulate the real world problem since it's not
always possible for us to get accurate observation points of the specific function .

The visualization of the objective function and the optima point are listed in the graph up
there . We should notice that programmers doesn't know those information beforehand .
Now , let's see what if we utilize Bayesian Optimization on the objective function . In each
iteration , we would probe an observation point through Bayesian Optimization and we
would recursively implement this behavior 15 iterations .

Visualization of the target function and the optima of the function

Tuning Hyperparameters with Bayesian Optimization (B.O.) 15

From the result shown above , we could find out that Bayesian Optimization indeed has the
problem of stucking in the local maximum . And here is my solution based on many times of
trials and errors .

To begin with , we know that as we own more and more prior knowledge of the target
function , Gaussian Process would update its prediction on the target function . However ,
when Bayesian Optimization converges , the new observation point we probed is often
adjacency to the previous observation points . Thus , the update belief of Gaussian Process
would only has a slightly difference from the previous belief . To rephrase it , under such
cases , Gaussian Process is not able to catch the big picture of our target function and make
precise predictions ; therefore , it often ends up that acquisition function suggests the
wrong point to probe in the next iteration . In consequence , our mission is to help Gaussian
Process gain the big picture of our function .

To reach the goal discussed above , before reinforcing Bayesian Optimization , we would
uniformly probed a several points of our target function in advance . The more continual our
uniformly probed observation points are , the better our gaussian process would fit the
function . Now , we would show what would happen if we own 10 uniformly distributed
observation points of the objective function before implementing Bayesian Optimization .

As the graphs illustrated above , we can find out that though both implementations of
Bayesian Optimization take 15 iterations to find the maximum value of the objective

Tuning Hyperparameters with Bayesian Optimization (B.O.) 16

function , the latter implementation with 10 uniformly distributed observation points has
resolved the problem of getting stuck in local maximum . Moreover, it only takes 5
iterations of Bayesian Optimization to get a decent approximation of the global maximum .
Still , it keeps getting closer and closer to the global maximum in every iteration .

Our approximation of global maximum derived from Bayesian Optimization is 4.023 , while
the true optima is 4.039 . I believe that our approximation is quite satisfying since we
basically know nothing about the function in our initial state . Not to mention that the
observation points we get has some noises added to it .

From this example , we could extrapolate that as long as we hold the big picture of our
objective function , Bayesian Optimization could be a powerful tool finding a decent set of
hyperparameters . Last but not least , though the scheme above can ameliorate the
reliability of finding global maximum by Bayesian Optimization , I believe there is still room
for improvement of solving this problem .

In conclusion , when we're facing high dimensional problems which is often costly to probe
a observation point , I believe through the scheme similar to grid search combined with
Bayesian Optimization , we should yield a relatively satisfying result whether it is global
maximum or not.

KNN on classifying picture of dogs and cats with Bayesian
Optimization
In this section , we will see how Bayesian Optimization works with KNN . There are some
interesting behavior carried out by Bayesian Optimization and we would get into it below
this paragraph .

In this implementation of Bayesian Optimization , I adopted the dataset from
'https://storage.googleapis.com/mledu-datasets/cats_and_dogs_filtered.zip' and the dataset
would be split into two sections - training dataset and validation dataset . I utilize Keras's
Sequential Model to accomplish this task . The structure of my model is shown in the
python code below .

def get_model(NUM_DENSE=1,dropout_rate=0):
 model=tf.keras.models.Sequential()
 model.add(l.Conv2D(32,(3,3),activation='relu',input_shape=(150,150,3)))
 model.add(l.MaxPooling2D(2,2))

 model.add(l.Conv2D(64,(3,3),activation='relu'))
 model.add(l.MaxPooling2D(2,2))

 model.add(l.Conv2D(128,(3,3),activation='relu'))
 model.add(l.MaxPooling2D(2,2))

https://storage.googleapis.com/mledu-datasets/cats_and_dogs_filtered.zip

Tuning Hyperparameters with Bayesian Optimization (B.O.) 17

 model.add(l.Flatten())
 for i in range(NUM_DENSE):
 model.add(l.Dropout(dropout_rate))
 model.add(l.Dense(512,activation='relu'))
 model.add(l.Dense(2))

 return model

At this point , the " NUM_DENSE " and "dropout_rate" weren't determined yet . Thus , these
two parameters would be tuned by Bayesian Optimization and the learning rate of the
model would be automatically tuned as well .

Next , I implemented Bayesian Optimization on my model with a view to getting the least
validation loss to prevent my model from getting overfitting . (I've tried to use Bayesian
Optimization to find the set of hyperparameters which optimize the value of validation
accuracy ; however , though it did quite well on the task , the problem of overfitting the
training set remained unsolved in that case .)

pbounds={'NUM_DENSE':(0,7),'lr':(1e-2,1e-4),'dropout_rate':(0.2,0.9)}

Above is the domain which Bayesian Optimization would dive in . I recorded every
hyperparameter set Bayesian Optimization probed and constructed the table below .

(In this example , the kernel of the gaussian process is Matern 3/2 and the acquisition
function adopted is EI .)

Generally , machine learning or deep learning models often try to strike a balance between
generalization and overfitting . In addition , it's a common way for a machine learning
programmer to apply dense layers in their models with the aim of making their models
capable of fitting high dimensional problems . Nevertheless , improper usage of dense layers
often leads to overfitting . Moreover , when machine learning programmers confronting a
brand new problem , it is technically difficult for one to realize what's the proper numbers of
dense layer to the problem . In this example , we can bring to light that Bayesian
Optimization may come in hand when we are facing such catastrophes .

From the table shown above , I think there are some mesmerizing behaviors of Bayesian
Optimization we could notice .

After a few iterations , we could discover that Bayesian Optimization probed several set of
hyperparameters with the attribute "NUM_DENSE" being zero . It's not hard for us to

Tuning Hyperparameters with Bayesian Optimization (B.O.) 18

envision that without dense layer , the condition of overfitting the training dataset could be
improved , so it's the right thing for the Bayesian Optimization to do .

Nonetheless , from iteration 9 to iteration 13 , there were some captivating things on foot .
Rather getting stuck on applying zero dense layer , Bayesian Optimization tried numbers of
dense layers with high dropout rate as its hyperparameter . I think it is a kind of strategy
similar to those programmers might use . We want our models to own the potential of
describing complex functions while we would exert regularizations on our models . Thus , it
is pretty exciting to perceive that Bayesian Optimization do make wise decisions . In
conclusion , when we don't know where to start on training a complex neural networks ,
maybe Bayesian Optimization could illuminate our way up or even accomplish our goal
subtly .

There is still one thing worth mentioning . We could spot that the learning rate hasn't
changed since iteration 4 . To know whether Bayesian Optimization is functioning normally
, I changed the bound of learning rate to see whether Bayesian Optimization would probe on
a different learning rate . Surprisingly , Bayesian Optimization take the smallest value in the
bound of learning rate . After a few attempts , I notice that it's quite reasonable for Bayesian
Optimization to pick the smallest number it could use as learning rate . Because from the
long term , the smaller the value of learning rate is , the more possible our model could get
close to global optimum due to the property of gradient descent . However , it might not
converge well since our number of iteration is limited , so we need to be cautious when we
are tuning learning rate through Bayesian Optimization .

In the end of this example , I want to compare the model taking advantage of Bayesian
Optimization with the model trained with the same dataset on the open source .

As the line chart shows , we could see that Bayesian Optimization meet our expectations on
resolving the problem of overfitting ; yet , it is a pity that the dataset aren't good enough to
increase our accuracy . To sum up , I think the model collaborating Bayesian Optimization
do surpass the performance of the general model .

Epilogue

performance of the model trained with Bayesian
Optimization

the model trained by the open source tutorial with
same dataset used above

Tuning Hyperparameters with Bayesian Optimization (B.O.) 19

After going through those details of Bayesian Optimization , I hope that the one who read
this article could feel the essence of it and enjoy the fascinating probabilistic properties
behind it . We've spot how powerful Bayesian Optimization is and also recognize some of
the flaws of Bayesian Optimization . I hope that in the future , the open source community
can construct more practical tools with Bayesian Optimization and I would spare no effort
to modify or make use of Bayesian Optimization . Thanks to this opportunity , I have gained
an insight into deep learning industry and at the same time sharpen my python
programming skills . It would be the end of the article . We appreciate your time spending
on reading through this article .

References
[1] Drew Bagnell & Stephane Ross (2009) Statistical Techniques in Robotics (16-831,
F09)Gaussian Process - Part 2.
Retrieved from https://www.cs.cmu.edu/~16831-
f14/notes/F09/lec21/16831_lecture21.sross.pdf

[2] Jie Wang (2021) An Intuitive Tutorial to Gaussian Processes Regression
Retrieved from https://arxiv.org/pdf/2009.10862.pdf

[3] Jochen Görtler , Rebecca Kehlbeck & Oliver Deussen (2019) A Visual Exploration of
Gaussian Processes
Retrieved from https://distill.pub/2019/visual-exploration-gaussian-processes/

[4] Jason Brownlee (2019) How to Implement Bayesian Optimization from Scratch in
Python.
Retrieved from https://machinelearningmastery.com/what-is-bayesian-optimization/

[5] Chengwei (2019) How to do Hyper-parameters search with Bayesian optimization for
Keras model
Retrieved from https://www.dlology.com/blog/how-to-do-hyperparameter-search-with-
baysian-optimization-for-keras-model/

[6] Jason Brownlee (2019) Your First Deep Learning Project in Python with Keras Step-
By-Step
Retrieved from https://machinelearningmastery.com/tutorial-first-neural-network-
python-keras/

[7] Apoorv Agnihotri & Nipun Batra (2020) Exploring Bayesian Optimization
Retrieved from https://distill.pub/2020/bayesian-optimization/

[8] Fernando Nogueira (2014) Pure Python implementation of bayesian global
optimization with gaussian processes.

Retrieved from https://github.com/fmfn/BayesianOptimization

[9] Peter I. Frazier (2018) A Tutorial on Bayesian Optimization

Retrieved from https://arxiv.org/abs/1807.02811

[10] Richard Wilkinson (2019) Introduction to GPs
Retrieved from https://rich-d-wilkinson.github.io/talks.html

https://www.cs.cmu.edu/~16831-f14/notes/F09/lec21/16831_lecture21.sross.pdf
https://arxiv.org/pdf/2009.10862.pdf
https://distill.pub/2019/visual-exploration-gaussian-processes/
https://machinelearningmastery.com/what-is-bayesian-optimization/
https://www.dlology.com/blog/how-to-do-hyperparameter-search-with-baysian-optimization-for-keras-model/
https://machinelearningmastery.com/tutorial-first-neural-network-python-keras/
https://distill.pub/2020/bayesian-optimization/
https://github.com/fmfn/BayesianOptimization
https://arxiv.org/abs/1807.02811
https://rich-d-wilkinson.github.io/talks.html

